The effect of substrate temperature on the properties of nanostructured silicon carbide films deposited by hypersonic plasma particle deposition
نویسندگان
چکیده
Nanostructured silicon carbide films have been deposited on molybdenum substrates by hypersonic plasma particle deposition. In this process a thermal plasma with injected reactants (SiCl4 and CH4) is expanded through a nozzle leading to the nucleation of ultrafine particles. Particles entrained in the supersonic flow are then inertially deposited in vacuum onto a temperature-controlled substrate, leading to the formation of a consolidated film. In the experiments reported, the deposition substrate temperature Ts has ranged from 250◦C to 700◦C, and the effect of Ts on film morphology, composition, and mechanical properties has been studied. Examination of the films by scanning electron microscopy has shown that the grain sizes in the films did not vary significantly with Ts. Micro-X-ray diffraction analysis of the deposits has shown that amorphous films are deposited at low Ts, while crystalline films are formed at high Ts. Rutherford backscattering spectrometry has indicated that the films are largely stoichiometric silicon carbide with small amounts of chlorine. The chlorine content decreases from 8% to 1.5% when the deposition temperature is raised from 450◦C to 700◦C. Nanoindentation and microindentation tests have been performed on as-deposited films to measure hardness, Young’s modulus and to evaluate adhesion strength. The tests show that film adhesion, hardness and Young’s modulus increase with increasing Ts. These results taken together demonstrate that in HPPD, as in vapor deposition processes, the substrate temperature may be used to control film properties, and that better quality films are obtained at higher substrate temperatures, i.e. Ts ≈ 700◦C.
منابع مشابه
Experimental Study of Nanostructured Silicon Carbide Film Formation by Hypersonic Plasma Particle Deposition
Experiments were conducted to study the effect of process parameters on the formation of nanostructured silicon carbide films by hypersonic plasma particle deposition (HPPD). In HPPD, vapor phase precursors are injected into a thermal plasma generated by a DC arc torch. The plasma is then quenched by supersonic expansion in a ceramic lined nozzle, resulting in the nucleation and growth of ultra...
متن کاملNanostructured Materials Production by Hypersonic Plasma Particle Deposition
We report on a new process for producing nanostructured materials, hypersonic plasma particle deposition (ItPPD), wherein a thermal plasma seeded with vapor-phase precursors is supersonically expanded through a nozzle to nucleate ultrafine particles, which are then deposited by hypersonic impaction onto a temperature-controlled substrate. Results from preliminary experiments aimed at synthesizi...
متن کاملThermal Plasma Deposition of Nanostructured Films
A thermal plasma process for the synthesis of nanoparticles and their immediate assembly into nanostructured films is discussed. In this process, known as hypersonic plasma particle deposition, a thermal plasma with injected precursors is expanded through a nozzle to nucleate nanoparticles, which are then inertially deposited onto a cooled substrate in vacuum. A lightly consolidated nanostructu...
متن کاملEffect of growth time on ZnO thin films prepared by low temperature chemical bath deposition on PS substrate
ZnO thin films were successfully synthesized on a porous silicon (PS) substrate by chemical bathdeposition method. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM),and photoluminescence (PL) analyses were carried out to investigate the effect of growth duration(3, 4, 5, and 6 h) on the optical and structural properties of the aligned ZnO nanorods. T...
متن کاملA Review on Titanium Nitride and Titanium Carbide Single and Multilayer Coatings Deposited by Plasma Assisted Chemical Vapor Deposition
In this paper, we reviewed researches about the titanium nitride (TiN) and titanium carbide (TiC) single and multilayer coatings. These coatings were deposited by the plasma assisted chemical vapor deposition (PACVD) technique. Plasma-based technologies are used for the processing of thin films and coatings for different applications such as automobile and aerospace parts, computer disc drives,...
متن کامل